Пятница, 05.03.2021, 22:50
Вітаю Вас Гость | Реєстрація | Вхід

і

Архив статей

Головна » Файли » 2014 » 4 (124)

Блажеєвський М.Є., Мозгова О.О. Сучасні електрохімічні методи визначення гідроген пероксиду
08.10.2014, 17:42

Резюме
Блажеєвський М.Є., Мозгова О.О. Сучасні електрохімічні методи визначення гідроген пероксиду.
Гідроген пероксид (ГП) має неабияке значення для функціонування живих організмів, у фармацевтичній та клінічній практиці, тваринництві, паперовій, гірничодобувній, текстильній, харчовій промисловості тощо. Отже, опрацювання аналітичних методик кількісного визначення H2O2 має практичне значення як для наукових, медичних, фармацевтичних, так і для промислових цілей. Практичні вимоги до методик визначення концентрації ГП включають такі критерії, як селективність, висока чутливість та швидкість виконання аналізу, а також простота, дешевизна та можливість його здійснення за різних умов. У теперішній час запропонована велика кількість методів визначення ГП в різноманітних об’єктах довкілля. Систематизація та аналіз наявних відомостей в цьому напрямку і є основною метою нашого огляду.
Ключові слова: гідроген пероксид, електрохімічні методи.

Резюме
Блажеевский Н.Е., Мозговая Е.А. Современные электрохимические методы определения пероксида водовода.
Пероксид водородa (ГП) имеет большое значение для функционирования живых организмов, в фармацевтической и клинической практике, животноводстве, бумажной, горнодобывающей, текстильной, пищевой промышленности и т.п. Поэтому, разработка аналитических методик количественного определения ГП имеет практическое значение как для научных, медицинских, фармацевтических, так и для промышленных целей. Практические требования к методикам определения концентрации ГП включают такие критерии, как селективность, высокая чувствительность и скорость выполнения анализа, а также простота, дешевизна и возможность его осуществления в разных условиях. В настоящее время предложено большое количество методов определения ГП в различных объектах окружающей среды. Систематизация и анализ имеющихся сведений в этом направлении и является основной целью нашего обзора.
Ключевые слова: пероксид водородa, электрохимические методы.

Summary
Blazheyevskiy M.Ye., Mozgova О.О. Modern electrochemical methods for hydrogen peroxide determination.
Hydrogen peroxide (HP) has a considerable importance for the functioning of living organisms, pharmaceutical and clinical practice, livestock, paper, mining, textile, food industry. Thus, the study of analytical methods of HP quantitative determination has practical significance for scientific, medical, pharmaceutical and industrial purposes. Practical requirements for the methods of HP concentration determination include such criteria as high sensitivity, selectivity and high speed of analysis, as well as simplicity, low cost and the ability to implement it in different conditions. At the present time a large number of the methods for HP determining in various objects in external medium were proposed. Systematization and analysis of available data in this area is the main purpose of our review.
Key words: hydrogen peroxide, electrochemical methods.

Рецензент: д.ф.н., проф. С.В. Колісник

УДК 541.138: 54.061/.062: 543.253: 54-39: 541.459

Національний фармацевтичний університет (Харків)

Национальный фармацевтический университет (Харьков)

National University of Pharmacy (Kharkov)

blazejowski@ukr.net , helio_helen@rambler.ru

Hydrogen peroxide (HP) has a considerable importance for the functioning of living organisms, pharmaceutical and clinical practice, livestock, paper, mining, textile, food industry. Thus, the study of analytical methods of HP quantitative determination has practical significance for scientific, medical, pharmaceutical and industrial purposes. Practical requirements for the methods of HP concentration determination include such criteria as high sensitivity, selectivity and high speed of analysis, as well as simplicity, low cost and the ability to implement it in different conditions. At the present time a large number of the methods for HP determining in various objects in external medium were proposed. Systematization and analysis of available data in this area is the main purpose of our review.

For the HP quantitative determination such methods as titration, colorimetry, spectrophotometry, fluorimetry, luminescence, sometimes with the use of fiber optics, various types of chromatography, chemiluminescence and electrochemical methods of analysis were used.

The electrochemical methods are considered to be the most selective, simple and rapid in performance and cost-effective. For electrochemical HP determination the direct oxidation at the working electrode (eg, platinum or carbon) is widely used.

HP in aqueous solutions can be determined directly by square wave voltammetry. In comparison to DC and differential pulse polarography, this method has following advantages: the scan time is reduced from minutes to a fraction of a second, the sensitivity is increased in several times and the dynamic range has been greatly expanded. The low detection limit of this method to allows apply it the determination of H2O2 in some samples of rainwater.

However, the rate of these processes is limited by slow stages electrode reactions, and therefore, high voltage, which significantly reduce the quality of monitoring, and there is an obstructive influence of other electroactive substances such as ascorbic acid, urate, bilirubin, etc.

According to the available literature, current research are aimed at developing new sensors for the H2O2 determination, mainly focused on the development of new modified electrodes, which is characterized by overvoltage reduction and accelerated electron transfer. For this purpose for the electrocatalytic determination of H2O2 was tested a number of different materials, such as, redox proteins, dyes, transition metals, metal oxides, metal phtalocyanine complexes, porphyrins metal redox polymers and carbon nanotubes was tested. These films act as mediators (mediators) between the electrode and the HP, which is present in solution or formed during the enzymatic reaction. As this activity takes place at a relatively low potential, it is possible to minimize the amount of interfering particles present in solution and obtain selective amperometric and other detectors for H2O2 determination.

Also for overvoltage reducing in the development of HP biosensors the variety of enzymes (peroxidase, catalase, etc.) are widely used. Currently, the development of biosensors using new biological materials as biocatalysts is in a great interest for replacing isolated enzymes. It was applied to HP monitoring using bioelectrodes from various biological tissue materials. Examples of such sensors are bioelectrodes based on the fabric vine root, horseradish, pineapple, kohlrabi, lettuce, asparagus, soybean, coconut and bacteria. These detectors have several advantages, namely more pronounced biocatalytic performance, improved stability, and relatively low cost.

However, the instability of enzymes prevents the development of biosensors. Therefore, there is a need to develop nonenzymatic and less expensive strategy for sensitive HP determination. On the other hand, there are nanomaterials, which have attracted much attention of researchers due to their unique chemical, physical and electronic properties that differ from bulk materials. In addition, the size and structure of nanomaterials can be adapted for the design of new sensitive detector bases and improving performance monitoring.

With the fast development of nanotechnology, the interest is rapidly emerging in the exploration of nanomaterials for the highly sensitive nonenzymatic detection of H2O2 based on the materials’ particular catalytic activities and large surface-to-volume ratio. Complex metal oxide with spinel structure, in spite of the difficulties in achieving high surface area and low resistivity, are very promising as electrocatalysts, because they are active, inexpensive and thermodynamically stable. Different metal oxide particles and nanoparticles have been successfully used for immobilization of enzymes and proteins and their applications in fabrication of hydrogen peroxide biosensor. It is noted that some of the above materials in combination with nanomaterials, have obvious advantages over conventional materials for the determination of H2O2.

References

  1. Schumb, W.C. Satterfield, C.N. and Wentworth, R.L. (1955), Hydrogen peroxide, ACS Monograph Series, New York.
  2. Pokhrel, D. and Viraraghavan, T.( 2004) ,“Treatment of pulp and paper mill wastewater– a review”, Sci. tot. envir.,vol. 333, no. 1, pp. 37-58.
  3.  Petri, B.G. et al. (2011), “Fundamentals of ISCO using hydrogen peroxide”, In Situ Chem. Oxid. Groundwater Remed, Springer New York, pp. 33-88.
  4.  Benitez, F.J. et al. (2000), “Contribution of free radicals to chlorophenols decomposition by several advanced oxidation processes”, Chemosph.,vol. 41, no. 8, pp. 1271-1277.
  5.  Levkovec, I.A. Starodub, N.F. Nazarenko V. I. i dr. (2003), “Ocenka toksichnosti vodnyh rastvorov PAV v processe ih okislitel'noj obrabotki”,  Him. tehnol. vody, vol. 25, no. 1, pp. 30-42.
  6.  Starodub, N. F. (2007), “Peroksid vodoroda: kontrol' soderzhanija v vodnyh ob’ektah”, Himija i tehnologija vody, vol. 29, no.6, pp.491-505.
  7.  Deng, Y. and Zuo, Y. (1999), “Factors affecting the levels of hydrogen peroxide in rainwater”, Atmosph. Environ, vol. 33, no. 9, pp. 1469-1478.
  8.  Peña, R.M. et al. (2001), “Measurements and analysis of hydrogen peroxide rainwater levels”, Atmosph. Environ., vol. 35, no. 2, pp. 209-219.
  9. Giorgio, M. et al. (2007), “Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals”, Nat. Rev. Mol. Cell Biol., vol. 8, no. 9, pp. 722-728.
  10. Kim, E. J. et al. (1999), “Disposable creatinine sensor based on thick-film hydrogen peroxide electrode system”, Anal. chim. acta,  vol. 394, no 2, pp. 225-231.
  11. Palomba, L. et al. (1996), “Low levels of hydrogen peroxide and L-histidine induce DNA double-strand breakage and apoptosis”, Eur. J. Pharm., vol. 318, no 1, pp. 167-173.
  12. Piana, G.L.M.G.S.A and Armani, M.C.U. (1998), “Hydrogen peroxide formation in platelets of patients with non-insulin-dependent diabetes mellitus”, Platelets, vol. 9, no. 3-4, pp. 213-217.
  13. Kolthoff, M. and co-workers (1969), Quantitative Chemical Analysis, 4th ed., Macmillan, London.
  14. Klassen, N.V. Marchington, D. and McGovan H.C.E. (1994), “H2O2 determination by the I3– method and by KMnO4 titration”, Anal. Chem., vol. 66, pp. 2921-2925.
  15. Wu, Z.S. et al. (2007), “Homogeneous gold nanoparticle-based colorimetric assay of hydrogen peroxide”, Anal. Chim. Acta, vol. 584, pp. 122-128.
  16. Frew, E.J. Jones, P., Scholes, G. (1983), “Spectrophotometric determination of hydrogen peroxide and organic hydroperoxides at low concentrations in aqueous solution”, Anal. Chim. Acta, vol. 155, pp. 139-150.
  17. Christensen, C.S. Brоdsgaard, S. Mortensen, P. et al. (2000), “Determination of hydrogen peroxide in workplace air: interferences and method validation”, J. Environ. Monit., vol. 2, pp. 339-343.
  18. Nogueira, R.F.P. Oliveira, M.C. and Paterlini, W.C. (2005), “Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate”, Talanta, vol. 66, no. 1, pp. 86-91.
  19. Peinado, J. Toribio, F. and Perez-Bendito, B. (1986), “Fluorometric reaction-rate method for determination of hydrogen peroxide at the nanomolar level”, Analytical Chemistry, vol. 58, no. 8, pp. 1725-1729.
  20. Schick, R. Strasser, I. and Stabel, H. (1997), “Fluorometrric determination of low concentration of H2O2 in water: comparison with two other methods and application to environmental samples and drinking water treatment”, Water Res., vol. 31(6), pp. 1371-1378.
  21. Paital, B. A. (2014), “Modified Fluorimetric Method for Determination of Hydrogen Peroxide Using Homovanillic Acid Oxidation Principle”, BioMed Res. Int., [Online], vol. 2014., available at: http://dx.doi.org/10.1155/2014/342958.
  22. Chen, H. Yu, H. Zhou, Y. and Wang L. (2007), “Fluorescent quenching method for determination of trace hydrogen peroxide in rain water”, Spectrochim. Acta Part A, vol. 67, pp. 683-686.
  23. Tarvina, M. McCord, B. Mount, K.et al. (2010), “Optimization of two methods for the analysis of hydrogen peroxide: High performance liquid chromatography with fluorescence detection and high performance liquid chromatography with electrochemical detection in direct current mode”, J. Chromatogr. A, vol. 1217, pp. 7564–7572.
  24. Zhou, X. and Arnold, M. A. (1995), “Internal enzyme fiber-optic biosensors for hydrogen peroxide and glucose”, Anal. Chim. Acta, vol. 304, pp. 147-156.
  25. Effkemann, S. Pinkernell, U. Karst, U. (1998), “Peroxide analysis in laundry detergents using liquid chromatography”, Anal. Chim. Acta, vol. 363, pp. 97-103.
  26. Navas, M. J. Jimenez, A.M. and Galan, G. (1996), “Review of chemiluminescent methods in food analysis”, Atmos. Environ, vol. 55(1), p. 9-17.
  27. Navas, M.J. Jimenez, A.M. and Galan, G. (1999), “Air analysis: determination of hydrogen peroxide by chemiluminescence”, Atmosph. environ., vol. 33, no. 14, pp. 2279-2283.
  28. Leitea,O.D. Fatibello-Filhob, O. Vieirac, H.J. Rochad, F.R.P. and Cury, N.M. (2007), “Multicommuted Flow-based System for Hydrogen Peroxide Determination by Chemiluminescence Detection Using a Photodiode”, Analytical Letters, vol. 40 (16), pp. 3148-3157.
  29. Tsaplev, Y.B. (2012) “Chemiluminescence determination of hydrogen peroxide”, J. Anal. Chem., vol. 67, no. 6, pp. 506-514.
  30. Raspi, G. and Nucci, L. (1967), “Polarographic behavior of H2O2 on a platinum microelectrode with periodic renewal of the diffusion layer”, Ricerca sci., vol. 37, pp. 509-516.
  31. Guidelli, R. Nucci, L. and Raspi, G. (1968), “Voltammetric behaviour of H2O2 in strong alkaline medium on platinized platinum”, Transact. Faraday Soc., vol. 64, pp. 3321-3331.
  32. Prabhu, V.G. Zarapkar, L.R. and Dhaneshwar, R.G. (1981), “Electrochemical studies of hydrogen peroxide at a platinum disc electrode”, Electrochim. Acta, vol. 26. no. 6, pp. 725-729.
  33. Zhang L.-S. and Wong, G.T.F. (1994), “The determination of hydrogen peroxide in aqueous solutions by square wave voltammetry “, Talanta, vol. 41 (11), pp. 1853-1859.
  34. Hall, S.B. Khudaish, E.A. and Hart, A. L. (1997), “Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part 1. An adsorption-controlled mechanism”, Electrochim. Acta, vol. 43, no. 5, pp. 579-588.
  35. Hall, S.B. Khudaish, E.A. and Hart, A. L. (1998), “Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part II: effect of potential”, Electrochim. Acta, vol. 43, no. 14, pp. 2015-2024.
  36. Hall, S.B. Khudaish, E.A. and Hart, A. L. (1999), “Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part IV: phosphate buffer dependence”, Electrochim. Acta, vol. 44, no. 25, pp. 4573-4582.
  37. Hall, S.B. Khudaish, E.A. and Hart, A. L. (2000), “Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part V: inhibition by chloride”, Electrochim. Acta, vol. 45, no. 21, pp. 3573-3579.
  38. Ojani ,R. Raoof, J.-B. and Babazadeh, R. (2010), “Electrocatalytic Oxidation of Hydrogen Peroxide Using Iodide as Mediator; Application for its Simple and Selective Determination”, J. Chin. Chem. Soc., vol. 57, pp. 1042-1049.
  39. Kicela, A. and Daniele, S. (2006), “Platinum black coated microdisk electrodes for the determination of high concentrations of hydrogen peroxide in phosphate buffer solutions”, Talanta, vol. 68, pp. 1632–1639.
  40. Bradshawa, M.P., Prenzlera P.D. (2011), “Square-wave voltammetric determination of hydrogen peroxide generated from the oxidation of ascorbic acid in a model wine base”, Electroanal., vol. 14, pp. 546-550.
  41. Fiedler, U. (1973), “Coulometric microdetermination of peroxides-I. Hydrogen peroxide”, Talanta, vol. 20, pp. 1097-1104.
  42. Dostal, A. Hermes, M. and Scholz F. (1996), “The formation of bilayered nickel-iron, cadmium-iron and cadmium–silver hexacyanoferrates by an electrochemically driven insertion–substitution mechanism”, J. Electroanalyt. Chem., vol. 415, no. 1, pp. 133-141.
  43. Li, P. Lui, K. Zh. Gao, J. Y. and Ivaska, A. (1992), “Electrocatalysis and flow-injection analysis of hydrogen peroxide at a chemically modified electrode”, Analyt. Chim. Acta, vol. 259, pp. 211-218.
  44. Gorton, L. and Jönsson, G. (1986), “A glucose sensor based on the adsorption of glucose on a palladium/gold modified carbon electrode”, Journal of Molecular Catalysis, vol. 38, no. 1, pp. 157-159.
  45. Gorton, L. and Svensson, T. (1986), “An investigation of the influences of the background material and layer thickness of sputtered palladium/gold on carbon electrodes for the amperometric determination of hydrogen peroxide”, J. Molecul. Catal., vol. 38, no. 1, pp. 49-60.
  46. Bennetto, H.P. et al. (1987), “An amperometric biosensor for laboratory determination of glucose”, Int. Analyst, vol. 8, pp. 22-27.
  47. Akmal, N. and Mark, H.B. (1992), “Detection of hydrogen peroxide at a cadmium modified platinum electrode in a flow injection mode”, Anal. lett., vol. 25, no. 12, pp. 2175-2186.
  48. Salimi, A. et al. (2007), “Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles”, Anal. Chim. Acta, vol. 594, no. 1, pp. 24-31.
  49. Wang, B. and Dong, S. (2000) “Sol–gel-derived amperometric biosensor for hydrogen peroxide based on methylene green incorporated in Nafion film”, Talanta, vol. 51, no. 3, pp. 565-572.
  50. Cox, J.A and Jaworski R.K. (1989) “Voltammetric reduction and determination of hydrogen peroxide at an electrode modified with a film containing palladium and iridium”, vol. 61, no. 19, pp. 2176-2178.
  51. Miah, M.R. and Ohsaka, T. (2006) “Cathodic detection of H2O2 using iodide-modified gold electrode in alkaline media”, Analytical chemistry, vol. 78, no. 4, pp. 1200-1205.
  52. Ojania, R. Raoof J.B., Babazadeh, R. (2010), “Electrocatalytic Oxidation of Hydrogen Peroxide Using Iodide as Mediator; Application for its Simple and Selective Determination”, J. Chin. Chem. Soc., vol. 57, no. 5A, pp. 1042-1049.
  53. Morrin, A. et al. (2004), “Electrocatalytic sensor devices:(I) cyclopenta-dienylnickel (II) thiolato Schiff base monolayer self-assembled on gold”, Talanta, vol. 64, no. 1, pp. 30-38.
  54. Sotomayor, M.D.P.T. Tanaka, A.A. and Kubota, L. T. (2003), “Tris (2, 2′-bipyridil) copper (II) chloride complex: a biomimetic tyrosinase catalyst in the amperometric sensor construction”, Electrochim. Acta, vol. 48, no. 7, pp. 855-865.
  55. De Mattos, I. L. et al. (2000), “Sensor for hydrogen peroxide based on Prussian blue modified electrode: Improvement of the operational stability”, Anal. Sci., vol. 16, no. 8, pp. 795-798.
  56. Karyakin, A.A. Karyakina, E.E. and Gorton, L. (2000) “Amperometric biosensor for glutamate using Prussian blue-based “artificial peroxidase” as a transducer for hydrogen peroxide”, Anal. Chem., vol. 72, no. 7, pp. 1720-1723.
  57. Thangamuthu, R. Yu-Ching, P. and Shen-Ming, C. (2011), “Electrocatalytic reduction of hydrogen peroxide and its determination in antiseptic and soft-glass cleaning solutions at phosphotungstate-doped-glutaraldehyde-cross-linked poly-l-lysine film electrodes”, Sensor Actuat. B-Chem., vol. 151, pp. 377-383.
  58. Kim, E. J. et al. (1999) “Disposable sensor based on thick-film hydrogen peroxide electrode system”, Anal. Chim. Acta, vol. 394, no. 2, pp. 225-231.
  59. Welch, C.M. Banks, C.E. Simm, A.O. and Compton, R.G. (2005) “Silver nanoparticle assemblies supported on glassy-carbon electrodes for detection of hydrogen peroxide”, Anal. Bioanal. Chem., vol. 382, pp. 12-21.
  60. Lin, M.S. and Jan, B.I. (1997), “Determination of hydrogen peroxide by utilizing a cobalt (II) hexacyanoferrate-modified glassy carbon electrode as a chemical sensor “, Electroanalysis, vol. 9, no. 4, pp. 340-344.
  61. Lin, M.S. Leu, H.J. (2005), “A Fe3O4-Based Chemical Sensor for Cathodic Determination of Hydrogen Peroxide”, Electroanalysis, vol. 17, no. 22, pp. 2068-2073.
  62. Lin, M.S. and Tseng, T.F. (1998), “Chromium (III) hexacyanoferrate (II)-based chemical sensor for the cathodic determination of hydrogen peroxide”, Analyst, vol. 123, no. 1, pp. 159-163.
  63. Santamaria, M.D. et al. (1998), “Determination of hydrogen peroxide by voltammetric techniques at carbon paste electrodes modified with transition metal phthalocyanines”, Quim. Anal., vol. 17, no. 3, pp. 147-152.
  64. Ohura, H. et al. (1996), “Potentiometric flow-injection determination of trace hydrogen peroxide based on its induced reaction in iron (III)-iron (II) potential buffer containing bromide and molybdenum (VI)”, Talanta, vol. 43, no. 6, pp. 943-950.
  65. Imato, T. et al. (2000), “Potentiometric flow injection analysis of concentrated hydrogen peroxide by using an Fe (II)–Fe (III) redox potential buffer solution”, Talanta, vol. 52, no. 1, pp. 19-26.
  66. Cai X. et al. (1995), “Indium–tin oxide film electrode as catalytic amperometric sensor for hydrogen peroxide”, Analyst, vol. 120, no. 10, pp. 2579-2583.
  67. Sužnjević, D. et al. (1997), “Polarographic determination of hydrogen peroxide in perborate containing commercial detergents under the bleaching process condition”, Electroanal., vol. 9, no. 11, pp. 861-864.
  68. Schwake, A. Ross, B. and Cammann, K. (1998), “Chrono amperometric determination of hydrogen peroxide in swimming pool water using an ultramicroelectrode array”, Sens. Actuat. B-Chem., vol. 46, no. 3, pp. 242-248.
  69. Chiu M.-H. Kumar, A.S. Sornambikai, S. et al. (2011), “Cosmetic Hydrogen Peroxide Detection Using Nano Bismuth Species Deposited Built-in Three-in-One Screen-Printed Silver Electrode”, J. Electrochem. Sci., vol.6, pp. 2352-2365.
  70. Yabuki, S. Mizutani, F. and Hirata, Y. (2000), “Hydrogen peroxide determination based on a glassy carbon electrode covered with polyion complex membrane containing peroxidase and mediator”, Sens. Actuat. B-Chem., vol. 65, no. 1, pp. 49-51.
  71. Lagrange, J. and Lagrange, Ph. (1991), “Voltammetric method for the determination of H2O2 in rainwater”, Fres. J. Analyt. Chem., vol. 339(7), pp. 452-454.
  72. Campanella, L., Roversi, R., Sammartino, M.P., Tomassetti, M. (1998), “Hydrogen peroxide determination in pharmaceutical formulations and cosmetics using a new catalase biosensor”, J. Pharm. Biom. Anal., vol. 18, pp. 105-116.
  73. Campanella, L. et al. (2003), “Determination of hydrogen peroxide in disinfectant solutions using a biosensor with two antagonist enzymes”, J. Pharm. Biomed. Anal., vol. 32, no. 4, pp. 737-751.
  74. Campanella L. et al. (1996), “The effect of organic solvent properties on a catalase enzyme sensor for monitoring hydrogen peroxide in nonaqueous solutions”, Electroanal., vol. 8, no. 12, pp. 1150-1154.
  75. Huaa, M.-Yu. Chena, H.-Ch. Tsaic, R.-Y. Lina, Yu-Ch. and Wang, L. (2011). “A novel biosensing mechanism based on a poly(N-butyl benzimidazole)-modified gold electrode for the detection of hydrogen peroxide”, Anal. Chim. Acta, vol. 693, pp. 114-120.
  76. Kulys, J. (1992), “Flow-through amperometric sensor for hydrogen peroxide monitoring”, Sens. Actuat. B-Chem., vol. 9, no. 2, pp. 143-147.
  77. Wijesuriya, D. Lin, M. S. and Rechnitz, G. A. (1990), “Grape tissue-based electrochemical sensor for the determination of hydrogen peroxide”, Anal. Chim. Acta, vol. 234, pp. 453-457.
  78. Safronova, O.G. Hichenko, V.I (1993), “Biosensory dlja opredelenija koncentracii perekisi vodoroda v rastvore na osnove rastitel'noj tkani Armoracia Rusticana”, Avtometrija, no. 2, pp. 39-45.
  79. Lu, Q. Dong, X. Li, L.-J. and Hu, X. (2010), “Direct electrochemistry-based hydrogen peroxide biosensor formed from single-layer graphene nanoplatelet–enzyme composite film”, Talanta, vol. 82, pp. 1344-1348.
  80. Lin, M.S. Tham, S.Y. and Rechnitz, G.A. (1990), “Pineapple-tissue based bioelectrode for the determination of hydrogen peroxide”, Electroanal., vol. 2, no. 7, pp. 511-515.
  81. Chen, L. et al. (1991), “Kohlrabi-based amperometric biosensor for hydrogen peroxide measurement”, Analyt. lett., vol. 24, no. 1, pp. 1-14.
  82. Fang Y. et al. (1992), “Lettuce seed meal tissue-based membrane electrode with high biocatalytic activity for hydrogen peroxide”, Electroanal., vol. 4, no. 8, pp. 819-822.
  83. Oungpipat, W. Alexander, P. W. and Southwell-Keely, P. (1995), “A reagentless amperometric biosensor for hydrogen peroxide determination based on asparagus tissue and ferrocene mediation”, Anal. Chim. Acta, vol. 309, no. 1, pp. 35-45.
  84. Vreeke, M.S. Yong, K.T. and Heller, A. (1995), “A thermostable hydrogen peroxide sensor based on" wiring" of soybean peroxidase”, Anal. Chem., vol. 67, no. 23, pp. 4247-4249.
  85. Kozan, J.V.B. Silva, R.P. Serrano, S.H.P.et al. (2007), “Biosensing hydrogen peroxide utilizing carbon paste electrodes containing peroxidases naturally immobilized on coconut (Cocus nucifera L.) fibers”, Analytica Chimica Acta, vol. 591, pp. 200-207.
  86. Sumathi, R. Rajasekar, R. and Narasimham, K.C. (2000), “Acetobacter peroxydans based electrochemical biosensor for hydrogen peroxide”, Bull. Electrochem., vol. 16, no. 1, pp. 25-28.
  87. Wang, J. (2005), “Nanomaterial-based electrochemical biosensors”, Analyst, vol. 130, no. 4, pp. 421-426.
  88. Thiagarajan, S. Tsai, T.H. and Chen, S. M. (2011), “Electrochemical fabrication of nano manganese oxide modified electrode for the detection of H2O2“, Int. J. Electrochem. Sci., vol. 6, pp. 2235-2245.
  89. Zhao, G. et al. (2005), “Direct electrochemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO2 film”, Electrochem. comm., vol. 7, no. 7, pp. 724-729.
  90. Feng, J.J. Xu, J.J. and Chen, H.Y. (2006), “Direct electron transfer and electrocatalysis of hemoglobin adsorbed onto electrodeposited mesoporous tungsten oxide”, Electrochem. comm., vol. 8, no. 1, pp. 77-82.
  91. Zhao, G. Xu, J.J. and Chen, H.Y. (2006), “Fabrication, characterization of Fe3O4 multilayer film and its application in promoting direct electron transfer of hemoglobin”, Electrochem. comm., vol. 8, no.1, pp. 148-154.
  92. Salimi, A. et al. (2006), “Direct voltammetry and electrocatalytic properties of hemoglobin immobilized on a glassy carbon electrode modified with nickel oxide nanoparticles”, Electrochem. Comm., vol. 8, pp. 1499-1508.
  93. Shi, Y. et al. (2011), “Carbon nanotube decorated with silver nanoparticles via noncovalent interaction for a novel nonenzymatic sensor towards hydrogen peroxide reduction”, J. Electroanal. Chem., vol. 656, no. 1, pp. 29-33.
  94. Li, J. Yu, Q. Peng, T. (2005), “Electrocatalytic oxidation of hydrogen peroxide and cysteine at a glassy carbon electrode modified with platinum nanoparticle-deposited carbon nanotubes”, Anal. Sci., vol. 21, no. 4, pp. 377-382.
  95. Yang, W. et al. (2006), “Hydrogen peroxide biosensor based on myoglobin/colloidal gold nanoparticles immobilized on glassy carbon electrode by a Nafion film”, Sens.Actuat. B-Chem., vol. 115, no. 1, pp. 42-48.
  96. Elzanowska, H. et al. (2004), “Hydrogen peroxide detection at electrochemically and sol-gel derived Ir oxide films”, Electroanal., vol. 16, no. 6, pp.478-490.
  97. Quintino, M.S.M. et al. (2005), “Amperometric sensor for glucose based on electrochemically polymerized tetraruthenated nickel-porphyrin”, Anal. Chim. Acta, vol. 539, no. 1, pp. 215-222.
  98. Chen, W. Cai, Sh. Ren, Q.-Q. Wen, W. and Zhao, Yu.-D. (2012), “Recent advances in electrochemical sensing for hydrogen peroxide: a review”, Analyst, vol. 137, pp. 49-62.
Категорія: 4 (124) | Додав: siderman
Переглядів: 406 | Завантажень: 0 | Рейтинг: 0.0/0
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]
RSS

Форма входу

Категорії розділу

1 (121) [47]2 (122) [36]
3 (123) [28]4 (124) [34]
5 (125) [0]6 (126) [0]

ПОИСК

НАШ ОПРОС

Оцените наш сайт
Всего ответов: 46

ДРУЗЬЯ САЙТА

Статистика


Онлайн всего: 1
Гостей: 1
Пользователей: 0